知识导航
资源分类

基于DAEM算法的风力发电并网系统概率潮流计算

基于DAEM算法的风力发电并网系统概率潮流计算

Probabilistic load flow calculation based on DAEM algorithm for wind-farm integration system

Probabilistic load flow calculation based on DAEM algorithm for wind-farm integration system

doi:
10.3969/j.issn.1673-5196.2018.01.017
摘要:
针对基于加权高斯混合分布(WGMD,weighted Gaussian mixture distribution)构建风电场概率模型的方法中,EM(expectation maximization)算法由于其固有缺陷导致整个模型拟合精度降低的问题,提出基于DAEM(deterministic annealing expectation maximization)算法的风电场概率建模方法,并结合马尔科夫链蒙特卡洛(MCMC,Markov Chain Monte Carlo)模拟法进行风力发电并网系统概率潮流计算.DAEM算法通过引入退火机制,避免了在模型参数最大似然估计时,EM算法容易陷入局部最优的问题,使得风电场模型更加准确.在接有风电场的IEEE39节点系统中进行概率潮流计算,计算结果证明了所提算法的精确性和有效性.
Abstract:
Aimed at the problem happened to the probability model of wind-farm built up with weighted Gaussian mixture distribution (WGMD) algorithm that the EM (expectation maximization) algorithm will lead entire model fitting precision to lower due to its inherent defect,a method for probability modeling of wind-farm is proposed based on DAEM (deterministic annealing expectation maximization) algorithm and integrated into MCMC (Markov Chain Monte Carlo) simulation method to conduct the computation of probabilistic load flow of wind farm integration system.When the maximum likelihood estimation of wind farm modeling parameters is being made,the DAEM algorithm by means of introducing an annealing mechanism,can avoid such problem that EM algorithm would easily lead to converging to local optimum,in order to make the model of windfarm even more accurate.The probability flow calculation is performed in IEEE 39 bus system connected with the wind-farm,and it is verified by the calculation result that the proposed algorithm will be accurate and valid.
作者 张晓英 [1] 王琨 [2] 汪彬 [1] 王晓兰 [1] 陈伟 [1]
Author: ZHANG Xiao-ying[1] WANG Kun[2] WANG Bin[1] WANG Xiao-lan[1] CHEN Wei[1]
作者单位
  1. 兰州理工大学电气工程与信息工程学院,甘肃兰州 730050;兰州理工大学甘肃省工业过程先进控制重点实验室,甘肃兰州730050;兰州理工大学国家级电气与控制工程实验教学中心,甘肃兰州730050
  2. 国网甘肃省电力公司电力科学研究院,甘肃兰州,730050
期 刊: 兰州理工大学学报 ISTIC EI SCI PKU CSSCI
Journal: Journal of Lanzhou University of Technology
年,卷(期) 2018, 44(1)
分类号 TM614
关键词: 风电并网 知识脉络 概率潮流 知识脉络 加权高斯混合分布 知识脉络 MCMC 知识脉络 EM 知识脉络 DAEM 知识脉络
Keywords: wind-farm integration probability load flow weighted Gaussian mixture distribution MCMC EM DAEM
机标分类号
基金项目 国家自然科学基金
参考文献和引证文献
返回顶部参考文献
返回顶部引证文献
返回顶部本文读者也读过
返回顶部相似文献
返回顶部相关博文

知识产权声明| 服务承诺| 联系我们| 人才招聘| 客户服务| 关于我们

京ICP证:010071  互联网出版许可证:新出网证(京)字042号  京公网安备11010802020237号
万方数据知识服务平台--国家科技支撑计划资助项目(编号:2006BAH03B01)©北京万方数据股份有限公司  万方数据电子出版社